Abstract
Conditions for the primary culture of branching scleractinian coral (Acropora micropthalma and Pocillopora damicornis) cells were established with a calcium-free seawater cell dissociation method. Cells were isolated and cultured in supplemented Dulbecco's modified Eagle media with heat-inactivated fetal bovine serum, antibiotics, and sterile seawater. Among the isolated cell types, large (60-100 microm) multicellular endothelial isolates (MEIs) were seen in high numbers. These isolates were observed to continually spin for up to 300 h without media change. The following parameters were optimized: media, serum, light, trace elements, and growth factor supplements. Rotations per minute were calculated to determine MEI motility in relation to size. Finally, analyses of external and internal structures were conducted with scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. Additional coral species, Montipora digitata, Stylophora pistillata, Seriatopora hystrix and Porites sp. were also cultured to determine the applicability of isolation techniques. The relatively long survival time of MEIs in primary culture makes them ideal candidates for in vitro studies examining coral disease processes (e.g., mode of infection and intracellular effects of disease-causing agents) as well as aspects of general coral growth and health (e.g., trace element requirements and transfer of products between host cell and zooxanthellae).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: In Vitro Cellular & Developmental Biology - Animal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.