Abstract
In Enterobacteriaceae, the ProP protein, which takes up proline and glycine betaine, is subject to a post-translational control mechanism that increases its activity at high osmolarity. In order to investigate the osmoregulatory mechanism of the Salmonella enterica ProP, we devised a positive selection for mutations that conferred increased activity on this protein at low osmolarity. The selection involved the isolation of mutations in a proline auxotroph that resulted in increased accumulation of proline via the ProP system in the presence of glycine betaine, which is a competitive inhibitor of proline uptake by this permease. This selection was performed by first-year undergraduates in two semesters of a research-based laboratory course. The students generated sixteen mutations resulting in six different single amino acids substitutions. They determined the effects of the mutations on the growth rates of the cells in media of high and low osmolarity in the presence of low concentrations of proline or glycine betaine. Furthermore, they identified the mutations by DNA sequencing and displayed the mutated amino acids on a putative three-dimensional structure of the protein. This analysis suggested that all six amino acid substitutions are residues in trans-membrane helices that have been proposed to contribute to the formation of the transport pore, and, thus, may affect the substrate binding site of the protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.