Abstract

For the study of DNA conformations, conformational transitions, and DNA-protein interactions, covalently closed supercoiled ColE1-plasmid DNA has been purified from cultures of Escherichia coli harboring this plasmid and grown in the presence of chloramphenicol according to the method of D.B. Clewell [J. Bact. 110 (1972)667]. The open circular and linear forms of the plasmid were prepared by digestion of the covalently closed, supercoiled form with pancreatic deoxyribonuclease and EcoRI-restriction endonuclease, respectively. The linear form was found to be very homogeneous by electron microscopy and sedimenting boundary analysis. Its physical properties (s0 20,w=16.3 S,D0 20,W=1.98 X 10(-8) cm2 s-1 and [eta]=2605 ml g-1) have been carefully determined in 0.2 M NaCl, 0.002 M NaPO4 pH 7.0,0.002 M EDTA, at 23 degrees C. Combination of s0 20, w (obtained by quasielastic laser light scattering) gave Ms,D=4.39 x 10(6). This value is in reasonable agreement with the molecular weight from total intensity laser light scattering M=4.30 x 10(6). The covalently closed and open circular forms of the ColE1-plasmid are less homogeneous due to slight cross-contamination and the presence of small amounts of dimers in these preparations. The weight fractions of the various components as determined by boundary analysis or electron microscopy are given together with the average quantities obtained in the same solvent for the supercoiled form ((s0 20,w)w=25.4 S, (D0 20,w)z=2.89 x 10(-8) cm2 s-1, [eta]= 788 ML G-1,Ms,D=4.69 x 10(6) and Mw=4.59 x 10(6)) and the open circular form (s0 20, w)w=20.1 S, (D0 20,w)z=2.45 x 10(-8) cm2 s-1, [eta]=1421 ml g-1,Ms,D=4.37 x 10(6) and Mw=4.15 x 10(6)). Midpoint analysis of the sedimenting boundaries allows unambiguous determination of the sedimentation coefficients of these two forms: s0 20,w=24.5 S and s0 20,w=18.8 S, respectively. Also deduced from total intensity light scattering were radii of gyration Rg (103.5, 134.2 and 186 nm) and second virial coefficients A2 (0.7, 4.8 AND 5.4 x 10(-4) mole ml/g2) for the supercoiled, the open circular and linear forms, respectively. The data presented are discussed in relation to the conformational parameters for the three forms in solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.