Abstract

Posttranslational modifications that give rise to multiple forms of alpha-amylase (EC 3.2.1.1) in barley (Hordeum vulgare L. cv Himalaya) were studied. When analyzed by denaturing polyacrylamide gel electrophoresis, barley alpha-amylase has a molecular mass of 43 to 44 kilodaltons, but isoelectric focusing resolves the enzyme into a large number of isoforms. To precisely identify these isoforms, we propose a system of classification based on their isoelectric points (pl). alpha-Amylases with pls of approximately 5, previously referred to as low pl or Amy1 isoforms, have been designated HAMY1, and alpha-amylases with pls of approximately 6, referred to as high pl or Amy2, are designated HAMY2. Individual isoforms of HAMY1 and HAMY2 are identified by their pls. For example, the most acidic alpha-amylase synthesized and secreted by barley aleurone layers is designated HAMY1(4.56). Some of the diversity in the pls of barley alpha-amylases arises from posttranslational modifications of the enzyme. We report the isolation of a factor from barley aleurone layers and incubation media that can modify HAMY1 isoforms in vitro. This factor has a molecular mass between 30 and 50 kilodaltons, and it can catalyze the conversion of HAMY1(4.90) and HAMY1(4.64) to isoforms 4.72 and 4.56, respectively. The in vitro conversion of HAMY1 isoforms by the factor is favored by pH values of approximately 5 and is inhibited at approximately pH 7. The level of this factor in aleurone layers and incubation media is not affected by treatment of the tissue with gibberellic acid. The amylase-modifying activity from barley will also modify alpha-amylases isolated from human saliva and porcine pancreas. An activity that can modify HAMY1 isoforms in vitro has also been isolated from Onozuka R10 cellulase. Because the activity isolated from barley lowers the pl of alpha-amylase from barley, human saliva, and porcine pancreas, we speculate that it is a deamidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.