Abstract

The transfer via the food chain from animals to humans of microbes that are resistant to antimicrobial agents is of increasing concern. To determine the contributions of nonpathogenic microflora to the occurrence and spread of antibiotic resistance (AR) genes in the food chain, 123 lactic acid bacteria were isolated from 29 samples of raw and processed pork and chicken meat products that had previously tested positive for one or more AR genes that encode clinically relevant ARs: tet(M), tet(O), tet(K), erm(A), erm(B), erm(C), aac (6′)-Ie aph (2′′)-Ia, mecA, and blaZ. All of the isolates were initially tested for their AR gene profiles by PCR. The 59 isolates carrying a tet, erm, or blaZ gene were taken through molecular identification, analyzed by determination of the MIC, and subjected to genetic fingerprinting. Lactococcus garvieae was the predominant species (28 isolates), followed by Lactobacillus plantarum (11 isolates) and L. salivarius (6 isolates), whereas Lactococcus lactis subsp. lactis, Lactobacillus johnsonii, L. reuteri, L. crispatus, and L. brevis were identified at lower frequencies. The tet(M) and erm(B) genes were the most frequently detected. Assessment of multiple resistances in 18 tet positive (tet+) isolates revealed that tet(M) plus erm(B) and tet(K) plus erm(B) were the most frequent AR gene patterns. Partial sequencing of the tet(M) open reading frame of three selected strains showed high sequence similarities (>99%) with tet(M) genes previously found in human pathogens (Listeria monocytogenes and Neisseria meningitidis). Southern hybridization with plasmid profiles revealed these strains contained tet(M)-carrying plasmids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call