Abstract

Dehydrins form the group II LEA protein family and are known to play multiple roles in plant stress tolerance and enzyme protection. They harbor a variable number of conserved lysine rich motifs (K-segments) and may also contain three additional conserved motifs (Y-, F- and S-segments). In this work, we report the isolation and characterization of an FSK2-type dehydrin from the halophytic species Atriplex halimus, which we designate as AhDHN1. In silico analysis of the protein sequence revealed that AhDHN1 contains large number of hydrophilic residues, and is predicted to be intrinsically disordered. In addition, it has an FSK2 architecture with one F-segment, one S-segment, and two K-segments. The expression analysis showed that the AhDHN1 transcript is induced by salt and water stress treatments in the leaves of Atriplex seedlings. Moreover, circular dichroism spectrum performed on recombinant AhDHN1 showed that the dehydrin lacks any secondary structure, confirming its intrinsic disorder nature. However, there is a gain of α-helicity in the presence of membrane-like SDS micelles. In vitro assays revealed that AhDHN1 is able to effectively protect enzymatic activity of the lactate dehydrogenase against cold, heat and dehydration stresses. Our findings strongly suggest that AhDHN1 can be involved in the adaptation mechanisms of halophytes to adverse environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call