Abstract

Skeletal muscle progenitor cells (SMPCs) are considered one of the most valuable cells for cell-based therapy targeting skeletal muscle. However, an efficient protocol for isolating and maintaining human myogenic progenitors in vitro has not been fully established. In this study, we demonstrate that human myogenic progenitors can be expanded and proliferated from human fetal muscles. Human SMPCs were prepared from fetal hind limb muscles and induced to proliferate as free-floating spheres termed myospheres in the medium containing basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Both myogenic progenitors and myoblast populations from human fetal muscles were effectively propagated in myospheres and passaged by a mechanical chopping. After expanding these spheres in culture, we tested whether myogenic progenitor cells can differentiate into multinucleated myotubes. The myospheres were dissociated, plated down on coverslips and cultured in the medium for terminal differentiation. We could confirm that the plated cells formed well-developed, multinucleated myotubes. This culture method using myospheres is an effective protocol to isolate and maintain SMPCs from human fetal skeletal muscles in culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.