Abstract

The aim of this study was to identify the chemical constituents of Loropetalum chinense (R. Brown) Oliv. (LCO) and determine which of these had antioxidant effects. The chemical composition of a 70% ethanol extract of LCO was analyzed systematically using UHPLC–Q-TOF-MS/MS. The chemical components of the 70% ethanol extract of LCO were then separated and purified using macroporous resin and chromatographic techniques. Antioxidant activity was evaluated using a DPPH assay. In total, 100 compounds were identified tentatively, including 42 gallic acid tannins, 49 flavones, and 9 phenolic compounds. Of these, 7 gallium gallate, 4 flavonoid and 8 quinic acid compounds were separated and purified from the 70% ethanol extract of LCO. The compounds identified for the first time in LCO and in the genus Loropetalum were 3,4,5-trimethoxyphenyl-(6′-O-galloyl)-O-β-d-glucopyranoside, protocatechuic acid, ethyl gallate, 5-O-caffeoylquinic acid, 3-O-caffeoylquinic acid, 3,5-O-diocaffeoylquinic acid, 4,5-O-diocaffeoylquinic acid and 3,4-O-diocaffeoylquinic acid. The 50% inhibitory concentration (IC50) values of compounds 1,2,3,4,6-penta-O-galloyl-β-d-glucose, gallic acid, protocatechuic acid, and ethyl gallate were 1.88, 1.05, 1.18, and 1.05 μg/mL, respectively. Compared with the control group (VC) (2.08 μg/mL), these compounds exhibited stronger anti-oxidation activity. This study offered considerable insight into the chemical composition of LCO, with preliminary identification of the antioxidant ingredients.

Highlights

  • Reactive oxygen species (ROS) refers to oxygen-containing reactive species and includes superoxide anions (O2 − ), hydrogen peroxide (H2 O2 ), and hydroxyl radicals (OH) [1]

  • ROS are in a constant dynamic state of production and elimination in vivo

  • They play an important role in physiological metabolic processes such as enhancing leukocyte phagocytosis and prostaglandin synthesis, and participating in enzymatic pathways that contribute to immunity [2]

Read more

Summary

Introduction

Reactive oxygen species (ROS) refers to oxygen-containing reactive species and includes superoxide anions (O2 − ), hydrogen peroxide (H2 O2 ), and hydroxyl radicals (OH) [1]. ROS are in a constant dynamic state of production and elimination in vivo. They play an important role in physiological metabolic processes such as enhancing leukocyte phagocytosis and prostaglandin synthesis, and participating in enzymatic pathways that contribute to immunity [2]. A net excess of ROS can follow an imbalance in ROS production and elimination This can lead to a series of peroxidation reactions, cross-linking or breakages with subsequent cellular structural damage and dysfunction. If this occurs chronically, a number of pathophysiological processes may ensue including arteriosclerosis, cardiovascular diseases, neurodegenerative diseases, cancers, and other disorders associated with aging [3,4,5,6]. Elimination of excess ROS in the body is Molecules 2018, 23, 1720; doi:10.3390/molecules23071720 www.mdpi.com/journal/molecules

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.