Abstract

In recent years, with the rapid development of marine farming activities, outbreaks of viral diseases have affected the grouper aquaculture industry, causing heavy economic losses. Singapore grouper iridovirus (SGIV) is one of the most important viruses causing disease in fish. In the present study, we isolated and identified a virus from diseased groupers by coculturing the affected tissue cells with grouper spleen cells. The genome of the isolated virus shared 99.83% nucleotide sequence homology with those of SGIV reference strains in the GenBank database. The virus clustered with SGIV on an evolutionary tree constructed based on "major capsid protein" (MCP) amino acid sequences, so it was designated 'Singapore grouper iridovirus Hainan' (SGIV-HN). To evaluate the pathogenic potential of SGIV-HN in fish, orange-spotted groupers were infected by intraperitoneal injection with the virus. Infected groupers began to die from the fourth day after infection, and survivors tended to be stable by the eighth day. The death rate was 83.33%. In a mock-infected control group, only two fish died, and the mortality rate was 6.67%. Dissection showed that the fish had enlarged spleenswith hemorrhage, and enlarged cells were visible with Giemsa staining. This is the first report of isolation of SGIV from naturally infected fish in China, and we show that SGIV-HN is highly infectious, causing massive deaths in groupers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.