Abstract

With the development of stem cell therapy in translational research and regenerative medicine, bone marrow mesenchymal stem cells (BM-MSCs), as a kind of pluripotent stem cells, are favored for their instant availability and proven safety. It has been reported that transplantation of BM-MSCs is of great benefit to repairing injured tissues in various diseases, which might be related to modulating the immune and inflammatory responses via paracrine mechanisms. Extracellular vesicles (EVs), featuring a double-layer lipid membrane structure, are considered to be the main mediators of the paracrine effects of stem cells. Recognized for their crucial roles in cell communication and epigenetic regulation, EVs have already been applied in vivo for immunotherapy. However, similar to its maternal cells, most of the studies on the efficacy of transplantation of EVs still remain at the level of small animals, which is not enough to provide essential evidence for clinical translation. Here, we use density-gradient centrifugation to isolate bone marrow cells (BMC) from porcine bone marrow at first, and get porcine BM-MSCs (pBM-MSCs) by cell culture subsequently, identified by the results of observation under the microscope, induced differentiation assay, and flow cytometry. Furthermore, we isolate EVs derived from pBM-MSCs in cell supernatant by ultracentrifugation, proved by the techniques of transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting successfully. Overall, pBM-MSCs and their derived EVs can be isolated and identified effectively by the following protocols, which might be widely used in pre-clinical studies on the transplantation efficacy of BM-MSCs and their derived EVs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call