Abstract

The control of food-borne pathogens and spoilage organisms in meat and related products is urgently needed. Bacteriocins produced by lactic acid bacteria (LAB) are promising natural food preservatives. In this study, six bacteriocin-producing bacteria were screened from soil and fresh cow dung. Pseudomonas koreensis PS1, a specific spoilage organism from spoiled chilled pork, was used as the indicator bacteria. From the analyses, the strain C010 was selected due to its high yield, broad spectrum, and subculture stability. Through morphological, biochemical, and 16S rDNA gene sequence analysis, this strain was identified as Lactobacillus plantarum. Crude bacteriocin extracted from the cell-free supernatant (CFS) of L. plantarum C010 was stable under high temperature, ultraviolet radiation, and protease attack (pepsin, trypsin, and proteinase K). The kinetics of bacterial growth and bacteriocin production by L. plantarum C010 were analyzed during batch fermentation. Bacteriocin was produced throughout the logarithmic growth phase, and the Leudeking-Piret model characterized the synthesis of bacteriocins. The present study indicates that this novel bacteriocin produced by bacteria is a promising option for reducing spoilage microorganisms and can be widely used as a bio-preservative in meat and other foods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call