Abstract

On the basis of the observation that nitrate reductase from Escherichia coli is sensitive to UV irradiation with an action spectrum indicative of a naphthoquinone (F. Brito and M. Dubourdieu, Biochem. Int. 15:1079-1088, 1987), we extracted and characterized quinone components from two different preparations of purified nitrate reductase. A soluble form of nitrate reductase, composed of alpha and beta subunits, was purified after release from the membrane fraction by heat treatment, and a detergent-solubilized form, containing alpha, beta, and gamma (cytochrome bNR) subunits, was purified in the presence of Triton X-100. Extraction of soluble alpha beta form with chloroform-methanol yielded several UV-absorbing components, which were characterized as menaquinone-9 with an oxidized side chain and further photodestruction products of the menaquinone. The total amount of menaquinone extracted into the organic phase was estimated to be 0.97 mol/mol of alpha beta dimer. Extraction of the detergent-solubilized alpha beta gamma form by a similar procedure yielded two naphthoquinone-like components which were characterized by mass spectrometry as the oxidized forms of menaquinone-9 and demethylmenaquinone-9. In this case, the molar ratio of total naphthoquinone to the alpha beta dimer was estimated to be greater than 6:1. When cytochrome bNR and detergent were eliminated from the detergent-solubilized enzyme by heat treatment and ion-exchange chromatography, only menaquinone-9 could be identified in the organic extract of the active alpha beta product. These results suggest that menaquinone-9 is specifically bound to the alpha beta dimer and may be the UV-sensitive component in the pathway of electron transfer catalyzed by nitrate reductase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.