Abstract

Prediction of microRNA (miRNA) candidates using computer programming has identified hundreds and hundreds of genomic hairpin sequences, of which, the functions remain to be determined. Because direct transfection of hairpin-like miRNA precursors (pre)-miRNAs in mammalian cells is not always sufficient to trigger effective RNA-induced gene-silencing complex (RISC) assembly, a key step for RNA interference (RNAi)-related gene silencing, we developed an intronic miRNA-expressing system to overcome this problem, and successfully increased the efficiency and effectiveness of miRNA-associated RNAi induction in vitro and in vivo. By insertion of a hairpin-like pre-miRNA structure into the intron region of a gene, this intronic miRNA biogenesis system has been found to depend on a coupled interaction of nascent precursor messenger RNA transcription and intron excision within a specific nuclear region proximal to genomic perichromatin fibrils. The intronic miRNA was transcribed by RNA type II polymerases, coexpressed with a primary gene transcript, and excised out of its encoding gene transcript by intracellular RNA splicing and processing mechanisms. Currently, some ribonuclease III endonucleases have been found to be involved in the processing of spliced introns and probably facilitating the intronic miRNA maturation. Using this miRNA-expressing system, we have shown for the first time that the intron-derived miRNAs were able to induce strong RNAi effects in not only human and mouse cells but also zebrafish, chicken embryos, and adult mice. Based on the strand complementarity between the designed miRNA and its target gene sequence, we have also developed a miRNA isolation protocol to purify and identify the mature miRNAs generated by the intronic miRNA-expressing system. Several intronic miRNA identities and structures are currently confirmed to be active in vitro and in vivo. According to this proof- of-principle method, we now have the knowledge to design pre-miRNA inserts that are more efficient and effective for the intronic miRNA-expressing system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.