Abstract

Fusarium oxysporum is one of the most harmful soil-borne pathogens that cause root rot, damping-off, and wilt disease in many plant species. Management of Fusarium oxysporum diseases is often by using many harmful and expensive chemical fungicides which have many harmful effects on the environment and human health. The current study was conducted to identify the chemical constituents of black cumin seeds’ methanolic extract and investigate the ability of the major constituents to inhibit the Fusarium oxysporum trypsin-like serine protease, which play an important role in F. oxysporun pathogenicity. The HPLC-MS analysis of black cumin seeds’ methanolic extract revealed the presence of seven major compounds: amentoflavone, Procyanidin C2, Quercetin3-O-sophoroside-7-O-rhamnoside, 5,7-Dihydroxy-3,4-dimethoxyflavone, Borapetoside A, tetrahydroxy-urs-12-en-28-O-[b-D-glucopyranosyl (1-2)-b-D-glucopyranosyl] ester, and kudzusapongenol A-hexA-pen. The results of molecular docking between these compounds and the active site of Fusarium oxysporium trypsin showed that only four compounds were able to bind to the active site of F. oxysporum trypsin. Amentoflavone, 5,7-Dihydroxy-3,4-dimethoxyflavone, and Quercetin3-O-sophoroside-7-O-rhamnoside have the highest binding energy, −6.4, −6.5, and −6.5 Kcal/mol, respectively. In addition, the results clarify that 5,7-Dihydroxy-3,4-dimethoxyflavone was the only compound to form a hydrogen bond with Asp189 (the residue responsible for substrate specificity). The results of the study strongly indicate that flavonoids of black cumin seeds’ methanolic extract could be used as effective inhibitors for the F. oxysporum trypsin-like serine protease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.