Abstract

In an attempt to amplify cervid satellite II DNA from the genomes of Indian muntjac and Chinese muntjac, a pair of primers derived from the white tailed deer satellite II DNA clone (OvDII) yielded a prominent approximately 1 kb polymerase chain reaction (PCR) product (in addition to the expected 0.7 kb satellite II DNA fragments) in both species. The approximately 1 kb products were cloned, sequenced, and analyzed by Southern blotting and fluorescence in situ hybridization (FISH). This revealed that the approximately 1 kb cloned sequences indeed represent a previously unknown cervid satellite DNA family, which is now designated as cervid satellite IV DNA. Approximately 1 kb PCR clones were also obtained from the genomes of the black tailed deer and Canadian woodland caribou with similar primer pairs. Extremely high sequence conservation (over 90% homology) was observed among the clones generated from all four deer species and PCR-Southern hybridization experiments further verified the co-amplification of two kinds of satellite DNA sequences with the same pair of primers. This satellite DNA was found to co-localize with centromeric proteins at the kinetochore by a simultaneous FISH and immunofluorescence study. Due to its high sequence conservation and close association with kinetochores, the newly identified satellite DNA may have a functional centromeric role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call