Abstract

BackgroundLipoxygenases (LOXs) play significant roles in abiotic stress responses, and identification of LOX gene promoter function can make an important contribution to elucidating resistance mechanisms. Here, we cloned the CmLOX08 promoter of melon (Cucumis melo) and identified the main promoter regions regulating transcription in response to signalling molecules and abiotic stresses.ResultsThe 2054-bp promoter region of CmLOX08 from melon leaves was cloned, and bioinformatic analysis revealed that it harbours numerous cis-regulatory elements associated with signalling molecules and abiotic stress. Five 5′-deletion fragments obtained from the CmLOX08 promoter—2054 (LP1), 1639 (LP2), 1284 (LP3), 1047 (LP4), and 418 bp (LP5)—were fused with a GUS reporter gene and used for tobacco transient assays. Deletion analysis revealed that in response to abscisic acid, salicylic acid, and hydrogen peroxide, the GUS activity of LP1 was significantly higher than that of the mock-treated control and LP2, indicating that the − 2054- to − 1639-bp region positively regulates expression induced by these signalling molecules. However, no deletion fragment GUS activity was induced by methyl jasmonate. In response to salt, drought, and wounding treatments, LP1, LP2, and LP4 promoted significantly higher GUS expression compared with the control. Among all deletion fragments, LP4 showed the highest GUS expression, indicating that − 1047 to − 1 bp is the major region regulating promoter activity and that the − 1047 to − 418-bp region positively regulates expression induced by salt, drought, and wounding, whereas the − 1284 to − 1047-bp region is a negative regulatory segment. Interestingly, although the GUS activity of LP1 and LP2 was not affected by temperature changes, that of LP3 was significantly induced by heat, indicating that the − 1284- to − 1-bp region is a core sequence responding to heat and the − 2054- to − 1284-bp region negatively regulates expression induced by heat. Similarly, the − 1047- to − 1-bp region is the main sequence responding to cold, whereas the − 2054- to − 1047-bp region negatively regulates expression induced by cold.ConclusionsWe cloned the CmLOX08 promoter and demonstrated that it is a signalling molecule/stress-inducible promoter. Furthermore, we identified core and positive/negative regulatory regions responding to three signalling molecules and five abiotic stresses.

Highlights

  • Lipoxygenases (LOXs) play significant roles in abiotic stress responses, and identification of LOX gene promoter function can make an important contribution to elucidating resistance mechanisms

  • Isolation and sequence analysis of the CmLOX08 promoter On the basis of the publicly available sequence in the melon genome database, we obtained the 2054-bp 5′ flanking sequence of CmLOX08 upstream of the ATG start codon from melon genomic DNA

  • Two alignments of the promoter sequence of CmLOX08-pro were performed based on the sequence obtained and that from the melon (Cucumis melon L.) genome database (GeLOX08-pro) using DNAMAN software

Read more

Summary

Introduction

Lipoxygenases (LOXs) play significant roles in abiotic stress responses, and identification of LOX gene promoter function can make an important contribution to elucidating resistance mechanisms. Overexpression of TomloxD in transgenic tomatoes clearly indicated that this gene is involved in endogenous jasmonic acid (JA) synthesis, and in turn regulates the expression of plant defence genes and resistance to high temperature [5, 6]. The persimmon DkLOX3 gene has been found to play positive roles in enhancing tolerance to salt and drought, and the stress-responsive expression of this gene in the DkLOX3-OX line of Arabidopsis was shown to be higher than that in the wild type [8]. LOX gene expression has been shown to be regulated in response to different abiotic stresses such as heat, cold, and wounding, or different signalling molecules such as methyl jasmonate (MeJA), abscisic acid (ABA), hydrogen peroxide (H2O2), and salicylic acid (SA) [10,11,12,13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.