Abstract

Potassium (K+) plays key roles in plant growth and development. However, molecular mechanism studies of K+ nutrition in forest plants are largely rare. In plants, SKOR gene encodes for the outward rectifying Shaker-type K+ channel that is responsible for the long-distance transportation of K+ through xylem in roots. In this study, we determined a Shaker-type K+ channel gene in purple osier (Salix purpurea), designated as SpuSKOR, and determined its function using a patch clamp electrophysiological system. SpuSKOR was closely clustered with poplar PtrSKOR in the phylogenetic tree. Quantitative real-time PCR (qRT-PCR) analyses demonstrated that SpuSKOR was predominantly expressed in roots, and expression decreased under K+ depletion conditions. Patch clamp analysis via HEK293-T cells demonstrated that the activity of the SpuSKOR channel was activated when the cell membrane voltage reached at -10 mV, and the channel activity was enhanced along with the increase of membrane voltage. Outward currents were recorded and induced in response to the decrease of external K+ concentration. Our results indicate that SpuSKOR is a typical voltage dependent outwardly rectifying K+ channel in purple osier. This study provides theoretical basis for revealing the mechanism of K+ transport and distribution in woody plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.