Abstract

Shrimp ovarian peritrophin (SOP), a major protein in jelly layer (JL) and cortical rods (CRs), is proposed to play a role in the protection of spawned eggs. The full sequence of SOP cDNA from Fenneropenaeus merguiensis (Fm-SOP) shares approximately 50% identity with other SOP sequences and contains several putative chitin-binding or peritrophin-A domains. Interestingly, Fm-SOP contains a putative 61-amino acid propeptide located at the N-terminal end, downstream of a 19-amino acid signal peptide, which is unique among penaeid SOP sequences described so far. This 61-amino-acid sequence constitutes a putative chitin-binding domain with six conserved cysteines, and is cleaved at a dibasic recognition site for a furin (subtilisin-like endoprotease). Expression analyses indicated that Fm-SOP mRNA is abundant in early vitellogenic ovaries and scarce in late-vitellogenic ovaries. Conversely, Fm-SOP protein is the most abundant at the end of vitellogenesis. To investigate its biological function, a recombinant Fm-SOP was expressed to generate a glycosylated protein in Spodoptera frugiperda Sf9 cells (rSOP-Sf9) and a nonglycosylated protein (rSOP-Ec) in Escherichia coli. rSOP-Sf9 and rSOP-Ec were found to bind to chitin, similarly to the native protein extracted from F. merguiensis ovaries. Most interestingly, rSOP-Ec displayed a chitinase activity and efficiently inhibited the growth of Vibrio harveyi and Staphylococcus aureus, with minimum inhibitory concentrations of 2.4 and 15.7 microM, respectively. This first report shows that a major component of CR and JL is biologically active against known pathogens and predicts a significant role of JL in the protection of the spawned eggs against pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call