Abstract
Early mammalian heart development is characterized by transient expression of Α-smooth muscle actin (Acta2). To date, cardiomyocytes expressing Acta2 in the early stages of in vivo development have not been characterized. To functionally characterize Acta2-expressing cardiomyocytes, we used a transgenic ES cell line expressing both the puromycin acetyl transferase (Pac) and enhanced green fluorescent protein (EGFP) cassettes under the control of the Acta2 promoter. The onset of Acta2 expression occurred in parallel with the appearance of beating areas, indicating the formation of cardiomyocytes. Antibiotic selection resulted in a high yield of cardiomyocytes and smooth muscle cells. The green fluorescent beating areas stained positively for multiple cardiomyocyte markers. Comparative electrophysiological analysis including fetal and Α-MHC-expressing ES cell-derived cardiomyocyte controls showed that Acta2-positive cardiomyocytes contained pacemaker-, atrial- and ventricular-like phenotypes. Interestingly, the proportion of ventricular-like cells was much higher in the Acta2-positive cardiomyocytes population than in control Α-MHC-expressing cardiomyocytes (75 % and 12 %, respectively). The findings of the present study provide a novel approach for the identification and enrichment of Acta2-positive cardiomyocytes, especially of the ventricular phenotype under in vitro conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.