Abstract

Today’s chrysanthemums are highly evolved flowering plants and they are considered as one of the most important ornamental cut flowers. In this research an isopentenyl transferase gene named CmIPT1 was isolated from Chrysanthemum morifolium cv. ‘Jinba’ using RACE and RT-PCR methods. The full cDNA sequence of CmIPT1 was 873 bp which encoded a deduced protein of 290 amino acids. It contained GxxGxGKS which is a conserved sequence of the typical domain of IPT family. The phylogenetic tree analysis of CmIPT1 in Chrysanthemum morifolium cv. ‘Jinba’ shows that it has the closest relationship with CcIPT1 in Cynara cardunculus var. scolymus. Expression of CmIPT1 was higher in stems and apex, whereas it was lower in leaves and roots. And the overexpression of CmIPT1 obviously increased the number of rosette branches in Arabidopsis. Here, in our study, we showed that CmIPT1 is a positive regulator of branch development in Chrysanthemum and may play a key role in regulating lateral branch formation of Chrysanthemum plants.

Highlights

  • The development of branching in plants involves the formation and subsequent growth of axillary buds [1]

  • In this research an isopentenyl transferase gene named CmIPT1 was isolated from Chrysanthemum morifolium cv

  • Based on the available IPT1 sequences from plant species such as Brassica campestris, Arabidopsis thaliana, Raphanus sativus and Solanum tuberosum, a 781 bp length DNA fragment was obtained from Chrysanthemum morifolium using PT1-PF/IPT1-PR

Read more

Summary

Introduction

The development of branching in plants involves the formation and subsequent growth of axillary buds [1]. Research showed that the level of expression of PsIPT1 and PsIPT2 in peas increased significantly and axillary bud started germinating after removing the shoot top by pruning. This illustrated that cytokinin was synthesized promptly to accelerate the growth of axillary buds after removing the shoot top by pruning [15]. According to the research results, IPT1 plays an important role in regulating lateral branch formation and the development of plants. We studied the role of the CmIPT1 gene in regulating branching by using allogenic transformation of Arabidopsis with the aim of breeding new varieties of cut-flower Chrysanthemum having less lateral branches or without any lateral branches by means of molecular biology techniques

Materials
Method
Cloning Full Length cDNA of the CmIPT1 Gene from Chrysanthemum
Sequence Analysis
Phylogenetic Analyses of the IPT1 Homologous Protein
Gene Expression Analysis of CmIPT1 in Different Tissues of Chrysanthemum
Phenotypic Analysis of CmIPT1 Over-Expressed Arabidopsis thaliana
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.