Abstract

The amyR 1 region controls the regulated expression of the Bacillus subtilis 168 amylase gene amyE. When cloned into the B. subtilis promoter-cloning plasmid pPL603, amyR1 has been shown to activate expression of the promoter-indicator gene cat-86. In this chimeric plasmid, p5' αB10, cat-86 expression was maximal in stationary phase B. subtilis cells and cat-86 expression was repressible by glucose. Both these properties are similar to the regulated expression of the B. subtilis amyE gene. In addition, cat-86 expression in p5' αB10 was inducible with chloramphenicol (Cm). The inducibility phenotype of cat-86 has been shown to be independent of the promoter that is used to activate the gene, and inducibility has been suggested to result from the presence of a pair of inverted-repeat sequences that span the ribosome-binding site (RBS) for cat-86. A spontaneous deletion mutant of p5' αB10 was isolated, p5' αB 10Δ1, in which cat-86 expression was constitutive with respect to Cm, but the basic pattern of amyR 1-directed regulation of cat-86 was intact. The rightward deletion endpoint was within the upstream member of the pair of inverted repeats that immediately precede cat-86. This result is therefore consistent with the role proposed for the inverted repeats in Cm inducibility. The leftward endpoint of the deletion is within the amyR 1 region and thus allows a more precise determination of the functional domain of amyR 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.