Abstract

The renewable source of neural stem cells (NSCs) with multi-lineage differentiation capability toward neurons, astrocytes, and oligodendrocytes represents an ideal supply for cell therapy of central nervous system (CNS) diseases. In spite of this, the clinical use of NSCs is hampered by heterogeneity, poor neuronal cell yield, predominant astrocytic differentiation of NSC progeny, and possible uncontrolled proliferation and tumor formation upon transplantation. The ability to generate highly enriched and defined neural cell populations from the renewable source of NSCs might overcome many of these impediments and pave the way toward their successful clinical applications.Here, we describe a simple method for NSC differentiation and subsequent purification of neuronal progenitor cells, taking advantage of size and granularity differences between neuronal cells and other NSC progeny. This highly enriched neuronal cell population provides an invaluable source of cells for both in vitro and in vivo studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.