Abstract

Xenopus is used as a model animal for investigating the inductive events and organogenesis that occur during early vertebrate development. Given that they are easy to obtain in high numbers and are relatively large in size, Xenopus embryos are excellent specimens for performing manipulations such as microinjection and microsurgery. The animal cap, which is the area around the animal pole of the blastula, is destined to form the ectoderm during normal development. However, these cells retain pluripotentiality and upon exposure to specific inducers, the animal cap can differentiate into neural, mesodermal, and endodermal tissues. In this sense, the cells of the animal cap are equivalent to mammalian embryonic stem cells. In this unit, the isolation and differentiation of animal cap cells, the so-called animal cap assay, is described. Useful methods for analyzing the mechanism of animal cap differentiation at the molecular level are also described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.