Abstract

Members of the Polycomb group (Pc-G) of genes encode transcriptional regulators that control the expression of key developmental effector genes in Drosophila melanogaster. Although multiple Pc-G genes have been identified and characterized in Drosophila, information about these important regulatory proteins in vertebrates, including their precise expression patterns, has remained scarce. We report here the cloning of Enx-1, a novel vertebrate Pc-G gene, which encodes the murine homolog of the Drosophila Enhancer of zeste (E(z)) gene. Drosophila E(z) controls the expression of several homeobox genes as well as some segmentation genes and its disruption causes multiple phenotypes in Drosophila development. Analysis of the primary structure of murine Enx-1 reveals the conservation of several regions, including the previously described SET domain and a newly defined CXC domain. In addition, we find the SET domain to be conserved in evolutionarily distant species ranging from vertebrates to plants and fungi. The expression pattern analysis of Enx-1 reveals ubiquitous expression throughout early embryogenesis, while in later embryonic development Enx-1 expression becomes restricted to specific sites within the central and peripheral nervous system and to the major sites of fetal hematopoiesis. In adult stages we also find Enx-1 expression to be restricted to specific tissues, including spleen, testis and placenta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call