Abstract

Although the major isomers of M@C82 (namely M@C2v (9)-C82 , where M is a trivalent rare-earth metal) have been intensively investigated, the lability of the minor isomers has meant that they have been little studied. Herein, the first isolation and crystallographic characterization of the minor Y@C82 isomer, unambiguously assigned as Y@Cs (6)-C82 by cocrystallization with Ni(octaethylporphyrin), is reported. Unexpectedly, a regioselective dimerization is observed in the crystalline state of Y@Cs (6)-C82 . In sharp contrast, no dimerization occurs for the major isomer Y@C2v (9)-C82 under the same conditions, indicating a cage-symmetry-induced dimerization process. Further experimental and theoretical results disclose that the regioselective dimer formation is a consequence of the localization of high spin density on a special cage-carbon atom of Y@Cs (6)-C82 which is caused by the steady displacement of the Y atom inside the Cs (6)-C82 cage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.