Abstract

The Myc-Max-Mad network of transcription factors plays an essential role in many cellular processes such as proliferation, differentiation, and apoptosis. The Mad proteins heterodimerize with Max, function as transcriptional repressors, and are capable of antagonizing the transforming activity of Myc. We report on the isolation of Xmad1, Xmad3, and Xmnt, novel Xenopus genes belonging to the Mad family. We also describe their temporal and spatial expression patterns during Xenopus embryogenesis. Xmad1 expression is found primarily in cells that have undergone terminal differentiation including the notochord, floor plate, and cement gland. Xmad3 transcripts are expressed broadly throughout the central nervous system and the eye, starting at neurula stages. In contrast, Xmnt expression in the CNS was localized anteriorly and, in addition, is present in the migrating neural crest cells. This study demonstrates the Mads are expressed in specific and mostly nonoverlapping patterns, suggesting distinct roles during embryogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.