Abstract

Mutants deficient in the biosynthesis of prodigiosin have been obtained by treatingSerratia marcescens with high doses of ultraviolet radiation. Mutants were selected on the basis of the color characteristics of their colonies when grown on peptone glycerol medium. New types of mutants, with unusual blocks in the biosynthetic pathway of prodigiosin, were obtained. All the mutants were classified under a new scheme on the basis of the syntrophic pigmentation characteristic and infrared spectroscopic analysis of their pigment. By these criteria mutants could be distinguished into eight distinct classes. Classes I to III include mutants of the three classes (M1, B3, and B1) reported previously [Morrison, DA (1966) J Bacteriol 91:1599–1604] and several new ones. Mutants blocked in the methylamylpyrrole (MAP) arm of the bifurcated pathway were assigned to class I. A class II mutant was distinguished by its inability to synthesize methoxybipyrrolecarboxyaldehyde (MBC), but was able to produce norprodigiosin. Class III mutants were deficient in the synthesis of hydroxybipyrrolecarboxaldehyde (HBC). Double mutants were obtained with defects in the expression of both MBC and MAP and were assigned to class IV. Mutants of class V were unable to synthesize HBC and MAP, but could form MBC when furnished with exogenous HBC. Class VI and VII mutants were defective in the synthesis of all three precursors, but differed in their ability to perform the coupling step. Finally, a mutant of class VIII was found to produce the three intermediates, but was deficient in prodigiosin or norprodigiosin biosynthesis, indicative of a defect in the enzymatic condensation of MAP with the bipyrroles MBC and HBC. The anomalous pattern of syntrophism among certain interclass mutants suggests that the physiology of pigment formation inS. marcescens is quite complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call