Abstract

It is well known that plant growth, development, survival and geographical distribution are constrained by extreme climatic conditions, especially extreme low temperature. Under cold stress, cold-inducible promoters were identified as important molecular switches to transcriptionally regulate the initiation of genes associated with cold acclimation processes and enhance the adaptability of plants to cold stimulation. Wheat (Triticum aestivum L.) is one of the most dominating food crops in the world, andwheat crops are generally overwintering with strong cold resistance. Our previous study already proved that heterologous expression of wheat ice recrystallization inhibition (IRI) genes enhanced freezing tolerance in tobacco. However, the upstream regulatory mechanisms of TaIRI are ambiguous. In this study, the space-time specific expression of TaIRI genes in wheat was analyzed by quantitative real-time PCR (qRT-PCR), and results showed that the expression of TaIRI in all tissues was cold-induced and accelerate by exogenous methyl jasmonate (MeJA). Three promoters of TaIRI genes were isolated from wheat genome, and various 5'-deletion fragments of TaIRIp were integrated into β-glucuronidase (GUS) within vector pCAMBIA1301. The promoteractivity of TaIRI geneswas determined through transient expression system of tobacco and stable expression of Arabidopsis thaliana. Results revealed that the GUS activity were significantly strengthened by cold and MeJA treatments. This study will provide insights into elucidating the transcription-regulatory mechanism of IRI proteins responding to low temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.