Abstract

Two repetitive sequences, As32 and As22, of 826 and 742 bp, respectively, were isolated from Avena strigosa (As genome). Databank searches revealed their high homology to different segments of the family of Ty1-copia retrotransposons. Southern hybridization showed them to be present in diploid and polyploid oat species. Polymerase chain reaction with primers designed to amplify the segment between them showed that As32 and As22 sequences are composed of two different Ty1-copia retrotransposons. The segment amplified from the pAs32 insert was 2,264 bp long and contained the entire GAG and AP domains, and more than half of the IN domain. This new element has been designated TAS-1 (transposon, A. strigosa, 1) and appears to contain a long open reading frame that encodes a polypeptide of 625 amino acids. Slot-blot and fluorescence in situ hybridization analyses revealed it to be a component of both A- and D-genome chromosomes. Further, the chromosomes involved in one C-A intergenomic translocation in A. murphyi (AC genomes), one C-D intergenomic translocation in A. byzantina cv. Kanota (ACD genomes), and two C-D intergenomic translocations in A. sativa cv. Extra Klock, were identified. Based on its physical distribution and Southern hybridization pattern, a parental retro-transposon represented by TAS-1 appears to have been active at least twice during the evolution of the genomes in species of Avena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call