Abstract

Employing discontinuous sucrose density gradient centrifugation of n -dodecyl β-d-maltoside-solubilized thylakoid membranes, three chlorophyll (Chl)-protein complexes containing Chl a , Chl c 2 and peridinin in different proportions, were isolated from the dinoflagellates Symbiodinium microadriaticum, S. kawagutii, S. pilosum and Heterocapsa pygmaea . In S. microadriaticum , the first complex, containing 13% of the total cellular Chl a , and minor quantities of Chl c 2 and peridinin, is associated with polypeptides with apparent molecular mass ( M r ) of 8-9 kDa, and demonstrated inefficient energy transfer from the accessory pigments to Chl a . The second complex contains Chl a , Chl c 2 and peridinin in a molar ratio of 1:1:2, associated with two apoproteins of M r 19-20 kDa, and comprises 45%, 75% and 70%, respectively, of the cellular Chl a , Chl c 2 and peridinin. The efficient energy transfer from Chl c 2 and peridinin to Chl a in this complex is supportive of a light-harvesting function. This Chl a - c 2 - peridin-protein complex represents the major light-harvesting complex in dinoflagellates. The third complex obtained contains 12% of the cellular Chl a , and appears to be the core of photosystem I, associated with a light-harvesting complex. This complex is spectroscopically similar to analogous preparations from different taxonomic groups, but demonstrates a unique apoprotein composition. Antibodies against the water-soluble peridinin-Chl a -protein (sPCP) light-harvesting complexes failed to cross-react with any of the thylakoid-associated complexes, as did antibodies against Chl a - c -fucoxanthin apoprotein (from diatoms). Antibodies against the P 700 apoprotein of plants did not cross-react with the photosystem I complex. Similar results were observed in the other dinoflagellates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.