Abstract

The local entomopathogenic bacterium, Bacillus thuringiensis (Bt) was isolated and characterized from 16 soil samples collected from different governorates in Egypt. Among 56 bacterial colonies obtained, only 16 colonies were characterized by traits of Bacillus. All the 16 isolates were toxic to the neonates of the cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Damietta and El-Sharkyia bacterial isolates showed appreciable mortality rates (100 and 96.6%), respectively, which were higher than that caused by the standard isolates of Bt entomocidus (that produce Cry1 C toxin) for which they were selected for further characterization. Scanning electron microscope of Damietta bacterial isolate showed the presence of a bipyramidal crystal protein; consistent with the presence of Cry1 toxin class, however, El-Sharkyia bacterial isolate produced spherical-shaped crystals consistent of Cry2 toxin class. Electrophoretic patterns of different isolates and standards revealed different molecular weight bands, ranged from 195 to 8KDa. Damietta and El-Sharkyia bacterial isolates produced major protein bands with molecular weights of 130 KDa, which was also present in Bt entomocidus. Both isolates also shared protein bands with Bt entomocidus with molecular weights of 80, 70, 65, 51, and 22 KDa. The 16S rRNA sequences of both isolates were submitted to the NCBI Gene Bank database, with accession numbers of LC070660 for Damietta isolate and LC070661 for El-Sharkiya isolate. The existence of different Cry genes in the 2 isolates was studied by PCR, using general primers of 5 Cry genes. Cry1 gene was detected in both isolates; however, Cry 2 gene was detected only in Damietta isolate.

Highlights

  • Insect pests have adverse and damaging impacts on agricultural production and market access

  • The entomopathogenic bacterium, Bacillus thuringiensis (Bt) is a rod-shaped, positive-gram, and spore-forming bacterium well-known for its insecticidal properties associated with its ability to produce crystal inclusions during sporulation

  • Isolations of local Bacillus thuringiensis In the present study, 16 soil samples were collected from different Egyptian governorates

Read more

Summary

Introduction

Insect pests have adverse and damaging impacts on agricultural production and market access. Up to 28% of the world food production is damaged by insects, either in the field or during storage (Pimentel 2005). Current pest control strategies rely greatly on chemical insecticides, which lead to numerous harmful effects such as. The entomopathogenic bacterium, Bacillus thuringiensis (Bt) is a rod-shaped, positive-gram, and spore-forming bacterium well-known for its insecticidal properties associated with its ability to produce crystal inclusions during sporulation. These inclusions are proteins encoded by Cry genes and have shown to be toxic to a variety of insects and other groups such as nematodes and protozoa Identification of Cry genes by PCR technique has been exploited to predict the insecticidal activity of the Bt strains and to determine the distribution of Cry genes with a Bt strains (Ammouneh et al 2010)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.