Abstract

The primary purpose of this study was to determine if methicillin-resistant Staphylococcus aureus (MRSA) strains could be identified in the milk of dairy cattle in a Paso del Norte region dairy of the United States. Using physiological and PCR-based identification schemes, a total of 40 Staph. aureus strains were isolated from 29 raw milk samples of 133 total samples analyzed. Pulsed-field gel electrophoresis after digestion with the SmaI enzyme revealed that the 40 confirmed strains were represented by 5 pulsed-field types, which each contained 3 or more strains. Of 7 hospital strains isolated from cows undergoing antibiotic therapy, 3 demonstrated resistance to 3 or more antimicrobial classes and displayed similar pulsed-field gel electrophoresis patterns. A secondary purpose of this study was to elucidate the evolutionary relationships of strains isolated in this study to genomically characterized Staph. aureus strains. Therefore, Roche 454 GS (Roche Diagnostics Corp., Dallas, TX) pyrosequencing was used to produce draft genome sequences of an MRSA raw milk isolate (H29) and a methicillin-susceptible Staph. aureus (PB32). Analysis using the BLASTn database (http://blast.ncbi.nlm.nih.gov/) demonstrated that the H29 draft genome was highly homologous to the human MRSA strain JH1, yet the β-lactamase plasmid carried by H29 was different from that carried by JH1. Genomic analysis of H29 also clearly explained the multidrug resistance phenotype of this raw milk isolate. Analysis of the PB32 draft genome (using BLASTn) demonstrated that this raw milk isolate was most related to human MRSA strain 04-02981. Although PB32 is not a MRSA, the PB32 draft genome did reveal the presence of a unique staphylococcal cassette mec (SCCmec) remnant. In addition, the PB32 draft genome revealed the presence of a novel bovine staphylococcal pathogenicity island, SaPIbovPB32. This study demonstrates the presence of clones closely related to human and (or) bovine Staph. aureus strains circulating in a dairy herd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call