Abstract

Nonylphenol polyethoxylates (NPEOs), although banned for decades, are still widely used in manufactories and thus affect human lives. In this study, a highly efficient NPEO-degrading bacterium, Sphingomonas sp. Y2, was isolated from sewage sludge by enrichment culture. Strain Y2 ensured the complete removal of NPEO in 48h and degraded 99.2% NPEO (1,000mgL(-1)) within 30h at a specific growth rate of 0.73h(-1) in minimum salt medium. To date, this degradation efficiency is the highest reported for NPEO metabolism by a pure bacterium under this condition. Furthermore, the application of this bacterium to wastewater treatment demonstrated that it metabolized 98.5% NPEO (1,000mgL(-1)) within 5days with a specific growth rate of 2.03day(-1). The degradation intermediates, identified as nonylphenol, short-chain NPEOs and short-chain nonylphenol polyethoxycarboxylates by high-performance liquid chromatography and gas chromatography-mass spectrometry, indicated the sequential exo-cleavage of the EO chain. Additionally, the enzymes involved in the biodegradation were inducible rather than constitutive. Considering that strain Y2 exhibits prominent biodegradation advantages in industrial wastewater treatment, it might serve as a promising potential candidate for in situ bioremediation of contamination by NPEOs and other structurally similar compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.