Abstract

Repetitive sequences constitute a significant component of most eukaryotic genomes, and the isolation and characterization of repetitive DNA sequences provide an insight into the organization and evolution of the genome of interest. We report the isolation and characterization of the major classes of repetitive sequences from the genome of Panax ginseng. The isolation of repetitive DNA from P. ginseng was achieved by the reannealing of chemically hydrolyzed (200 bp-1 kb fragments) and heat-denatured genomic DNA to low C(o)t value. The low C(o)t fraction was cloned, and fifty-five P. ginseng clones were identified that contained repetitive sequences. Sequence analysis revealed that the fraction includes repetitive telomeric sequences, species-specific satellite sequences, chloroplast DNA fragments and sequences that are homologous to retrotransposons. Two of the retrotransposon-like sequences are homologous to Ty1/ copia-type retroelements of Zea mays, and six cloned sequences are homologous to various regions of the del retrotransposon of Lilium henryi. The del retrotransposon-like sequences and several novel repetitive DNA sequences from P. ginseng were used to differentiate P. ginseng from P. quinquefolius, and should be useful for evolutionary studies of these disjunct species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.