Abstract
There is increasing interest in regenerated cellulose (RC) films for advanced manufacturing applications using natural polymers and renewable materials. In this study, RC films were isolated via solution casting process using microcrystalline cellulose (MCC) and the ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM]Cl). Initially, MCC was synthesized from oil palm empty fruit bunch using total chlorine-free (TCF) pulping and acid hydrolysis. Effects of MCC on the structures and physicochemical properties of the isolated RC films were determined for 4 wt%, 6.5 wt%, and 9 wt% of MCC at 80 °C. Several analytical methods were employed to evaluate degree of crystallinity, chemical stability, mechanical properties, morphology, opacity, water vapor permeability, and thermal stability of the RC films. The results showed that the addition of 6.5 wt% of MCC yielded the greatest tensile strength. Compared with the RC films with 6.5 wt% of MCC, thermal stability and water vapor permeability slightly increased when the MCC content was 9 wt%. According to the analytic hierarchy process (AHP), 6.5 wt% of MCC was the optimum MCC concentration to mix with [BMIM]Cl to manufacture RC films for packaging applications, while 9 wt% of MCC was ideal for photocatalytic and electrically conductive thin film applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.