Abstract

We made use of the 9-(1′-pyrene)nonanol/ultraviolet (P9OH/UV) method and isolated peroxisome-deficient mutant cells. TKa cells, the wild-type Chinese hamster ovary (CHO) cells, CHO-K1, that had been stably transfected with cDNA encoding Pex2p (formerly peroxisome assembly factor-1, PAF-1) were used to avoid frequent isolation of the Z65-type, PEX2-defective mutants. P9OH/UV-resistant cell colonies were examined for the intracellular location of catalase, a peroxisomal matrix enzyme, by immunofluorescence microscopy and using anti-catalase antibody. As six mutant cell clones showed cytosolic catalase, there was likely to be a deficiency in peroxisome assembly. These mutants also showed the typical peroxisome assembly-defective phenotype, including significant decrease of dihydroxyacetonephosphate acyltransferase, the first step key enzyme in plasmalogen synthesis, and loss of resistance to 12-(1′-pyrene)dodecanoic acid/UV treatment. By transfection of Pex2p and Pex6p (formerly PAF-2) cDNAs and cell fusion analysis between the CHO cell mutants, two mutants, ZP104 and ZP109, were found to belong to a novel complementation group. Further complementation analysis using fibroblasts from patients with peroxisome biogenesis disorders revealed that the mutants belonged to human complementation group III. Taken together, ZP104 and ZP109 are in a newly identified fifth complementation group in CHO mutants reported to date and represent the human complementation group III.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.