Abstract
Nitric oxide reductase was isolated from the membrane fraction of a denitrifying bacterium, Paracoccus halodenitrificans, in the presence of n-dodecyl beta-D-maltoside. A relatively simple and effective procedure to purify NO reductase using DEAE-Toyopearl and hydroxyapatite (ceramic) chromatographies has been developed. The enzyme consisted of two subunits with molecular masses of 20 and 42 kDa associated with the c-type heme and two b-type hemes, respectively. The optical and magnetic circular dichroism (MCD) spectra of the oxidized (as isolated) and reduced enzymes indicated that the heme c is in the low-spin state and the hemes b are in the high- and low-spin states. The EPR spectrum also showed the presence of the split high-spin component (g perpendicular = 6.6, 6.0) and two low spin components (gz,y,x = 2.96, 2.26, 1.46, gz = 3.59). Although the presence of an extra iron was suggested from atomic absorption spectroscopy, a non-heme iron could not be detected by colorimetric titrations using ferene and 2-(5-nitro-2-pyridylazo)- 5-(N-propyl-N-sulfopropylamino)phenolate (PAPS). One of the extra signals at g = 4.3 and 2.00 might come from a non-heme iron, while they may originate from an adventitious iron and a certain nonmetallic radical, respectively. When CO acted on the reduced enzyme, both of the low-spin hemes were not affected, and when NO acted on the reduced enzyme, the optical and MCD spectra were of a mixture of the oxidized and reduced enzymes. Consequently, the reduction of NO was supposed to take place at the high-spin heme b. The heme c and the low-spin heme b centers were considered to function as electron mediators during the intermolecular and intramolecular processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.