Abstract

Twenty-five Neurospora crassa mutants obtained by chemical mutagenesis were screened for increased resistance to various antifungal plant defensins. Plant defensin-resistant N. crassa mutants were further tested for their cross-resistance towards other families of structurally different antimicrobial peptides. Two N. crassa mutants, termed MUT16 and MUT24, displaying resistance towards all plant defensins tested but not to structurally different antimicrobial peptides were selected for further characterization. MUT16 and MUT24 were more resistant towards plant defensin-induced membrane permeabilization as compared to the N. crassa wild-type. Based on the previously demonstrated key role of fungal sphingolipids in the mechanism of growth inhibition by plant defensins, membrane sphingolipids of MUT16 and MUT24 were analysed. Membranes of these mutants contained structurally different glucosylceramides, novel glycosylinositolphosphorylceramides, and an altered level of steryl glucosides. Evidence is provided to link these clear differences in sphingolipid profiles of N. crassa mutants with their resistance towards different plant defensins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.