Abstract

BackgroundInnovations in fish nutrition act as drivers for the sustainable development of the rapidly expanding aquaculture sector. Probiotic dietary supplements are able to improve health and nutrition of livestock, but respective bacteria have mainly been isolated from terrestrial, warm-blooded hosts, limiting an efficient application in fish. Native probiotics adapted to the gastrointestinal tract of the respective fish species will establish within the original host more efficiently.ResultsHere, 248 autochthonous isolates were cultured from the digestive system of three temperate flatfish species. Upon 16S rRNA gene sequencing of 195 isolates, 89.7% (n = 175) Gram-negatives belonging to the Alpha- (1.0%), Beta- (4.1%) and Gammaproteobacteria (84.6%) were identified. Candidate probiotics were further characterized using in vitro assays addressing 1) inhibition of pathogens, 2) degradation of plant derived anti-nutrient (saponin) and 3) the content of essential fatty acids (FA) and their precursors. Twelve isolates revealed an inhibition towards the common fish pathogen Tenacibaculum maritimum, seven were able to metabolize saponin as sole carbon and energy source and two isolates 012 Psychrobacter sp. and 047 Paracoccus sp. revealed remarkably high contents of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Furthermore, a rapid and cost-effective method to coat feed pellets revealed high viability of the supplemented probiotics over 54 d of storage at 4°C.ConclusionsHere, a strategy for the isolation and characterization of native probiotic candidates is presented that can easily be adapted to other farmed fish species. The simple coating procedure assures viability of probiotics and can thus be applied for the evaluation of probiotic candidates in the future.

Highlights

  • Innovations in fish nutrition act as drivers for the sustainable development of the rapidly expanding aquaculture sector

  • Here, a strategy for the isolation and characterization of native probiotic candidates is presented that can be adapted to other farmed fish species

  • In the context of stagnating fisheries landings combined with increasing per capita consumption of fish worldwide, the demand for fish can only be met by a sustainable development of the aquaculture industry, where resources are by far more efficiently used [1, 2]

Read more

Summary

Introduction

Innovations in fish nutrition act as drivers for the sustainable development of the rapidly expanding aquaculture sector. Probiotic dietary supplements are able to improve health and nutrition of livestock, but respective bacteria have mainly been isolated from terrestrial, warm-blooded hosts, limiting an efficient application in fish. Innovations in fish nutrition may act as drivers for the development of this industrial sector. In this context, functional diets that provide benefits by targeting specific physiological mechanisms to improve the health and immune status or optimize growth and feed conversion have a huge potential. Probiotics have been widely assessed in functional diets of terrestrial livestock but have an expandable potential in fish nutrition

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call