Abstract

Two methylotrophic bacterial strains, TR3 and PSCH4, capable of growth on methanesulfonic acid as the sole carbon source were isolated from the marine environment. Methanesulfonic acid metabolism in these strains was initiated by an inducible NADH-dependent monooxygenase, which cleaved methanesulfonic acid into formaldehyde and sulfite. The presence of hydroxypyruvate reductase and the absence of ribulose monophosphate-dependent hexulose monophosphate synthase indicated the presence of the serine pathway for formaldehyde assimilation. Cell suspensions of bacteria grown on methanesulfonic acid completely oxidized methanesulfonic acid to carbon dioxide and sulfite with a methanesulfonic acid/oxygen stoichiometry of 1.0:2.0. Oxygen electrode-substrate studies indicated the dissimilation of formaldehyde to formate and carbon dioxide for energy generation. Carbon dioxide was not fixed by ribulose bisphosphate carboxylase. It was shown that methanol is not an intermediate in methanesulfonic acid metabolism, although these strains grew on methanol and other one-carbon compounds, as well as a variety of heterotrophic carbon sources. These two novel marine facultative methylotrophs have the ability to mineralize methanesulfonic acid and may play a role in the cycling of global organic sulfur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.