Abstract

Saccharomyces cerevisiae mutants that were unable to utilize extracellular ethanolamine for phosphatidylethanolamine synthesis were isolated. Two of them carried recessive chromosomal mutations in a same gene and were defective in CTP:phosphoethanolamine cytidylyltransferase (ECT) activity in vitro (Ect-). In an Ect- mutant that also carried the cho1 mutation, phosphatidylethanolamine accounted for less than 2% of total phospholipids, suggesting the importance of ECT in phosphatidylethanolamine synthesis. By screening a genomic library on a low copy number vector, three complementary clones of different size were isolated. A 2.8-kb common DNA region carried an open reading frame (ORF) of 969 bp in length, of which a truncated from failed to complement the Ect- mutation. This ORF was identical to the previously isolated MUQ1 gene of unknown function. Its deduced amino acid sequence had significant similarity to CTP: phosphocholine cytidylyl-transferases of yeast and rat. The entire ORF, when combined with the glutathione S-transferase gene and expressed in Escherichia coli, exhibited ECT activity. These results indicate that the cloned gene encodes a catalytic subunit of ECT of S. cerevisiae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.