Abstract

Chondroitin sulfate (CS) is a glycosaminoglycan that composed of hexosamine (D-galactosamine) and hexuronic acid (D-glucuronic acid) unit arranged in an alternating unbranched sequence. CS is an essential component of the extracellular matrix (ECM) of connective tissue. It is mainly covalently attached to core proteins in the form of proteoglycans so that it exhibits specific interactions with proteins for cell growth, differentiation, division and migration. In this study, CSs were purified from the cartilage and backbone of sturgeon (Acipenser sinensis). To characterize their biochemical properties, we performed disaccharide compositional analysis after chondroitinase ABC digestion, high performance size exclusion chromatography (HPSEC) and (1)H-NMR spectroscopy. We also investigated the effects of CSs on fibroblast proliferation and adhesion to determine whether wound healing was accelerated in vitro and proliferation of different mitogen-activated protein kinases (MAPK) signaling pathways was facilitated. The CS purified from sturgeon cartilage was primarily composed of 4-sulfated CS (88.8%) and sturgeon backbone CS contains more than 60% 6-sulfated CS. The average molecular weights of CSs obtained from sturgeon cartilage and backbone were found to be 8 and 43 kDa, respectively. Our results showed that both CSs are able to increase cell adhesion, induce proliferation and migration on fibroblasts and may accelerate wound healing by inducing MAPK signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.