Abstract
Matrix vesicles, associated with initial calcification in cartilage, have been isolated from bovine fetal epiphyseal cartilage. Cartilage was digested with collagenase, then partitioned into seven fractions by differential centrifugation. The cellular fractions contained over 80% of the DNA in the digest. The extracellular fraction that contained matrix vesicles, in which apatite crystals were often seen on electron microscopy, also displayed the highest specific activity for alkaline phosphatase, pyrophosphatase, ATPase, and 5'-AMPase (EC 3.1.3.1., 3.6.1.1, 3.6.1.3, and 3.1.3.5, respectively). Most of the acid phosphatase (EC 3.1.3.2) activity, on the other hand, was found in the cellular fractions, indicating that matrix vesicles are quite distinct from lysosomes. This appears to be the first instance of isolation of membrane-bounded extracellular particles from any normal tissue. The matrix vesicles possess enzymes that can increase the local concentration of orthophosphate and thus could lead to the formation of hydroxyapatite. The membrane-bounded matrix vesicles may also provide a mechanism for ATP-dependent transport of calcium or phosphate into the lumen of the vesicles with resultant mineralization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.