Abstract

Quinolone antimicrobial agents rapidly kill bacteria by largely unknown mechanisms. To study this phenomenon, a strain of Escherichia coli inhibited but inefficiently killed by (i.e., partially tolerant to) norfloxacin was isolated and characterized. E. coli KL16 (norfloxacin MIC, 0.10 microgram/ml; MBC, 0.20 microgram/ml) was mutagenized with nitrosoguanidine and cyclically exposed to 3 micrograms of norfloxacin per ml. After five cycles, a bacterial strain (DS1) which was killed 1,000-fold less than KL16 during 3 h of drug exposure was isolated. The MIC and MBC of norfloxacin for DS1 were 0.20 and 1.5 micrograms/ml, respectively. Over a range of norfloxacin concentrations, DS1 was killed 2 to 4 orders of magnitude less than KL16. DS1 grew more slowly than KL16 but after normalization for growth rate was killed four times less rapidly than KL16 at drug concentrations 10-fold higher than respective MICs. DS1 and KL16 cells filamented similarly upon exposure to norfloxacin. DS1 exhibited tolerance to other DNA gyrase A subunit antagonists (ofloxacin and ciprofloxacin) and DNA gyrase B subunit antagonists (novobiocin and coumermycin) but not to the aminoglycoside gentamicin, suggesting involvement of DNA gyrase. DS1 also appeared to be minimally tolerant to the beta-lactam cefoxitin. DS1 exhibited increased susceptibility to the mutagen methyl methanesulfonate, implying a defect in DNA repair. This report describes the first use of quinolone enrichment for isolation of a bacterial strain partially tolerant to quinolones. The study of defects in such tolerant strains offers an approach to an increased understanding of the mechanisms of bacterial killing by quinolones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.