Abstract

A reductive pathway of uracil catabolism was shown to be functioning in Escherichia coli B ATCC 11303 by virtue of thin-layer chromatographic and enzyme analyses. A mutant defective in uracil catabolism was isolated from this strain and subsequently characterized. The three enzyme activities associated with the reductive pathway of pyrimidine catabolism were detectable in the wild-type E. coli B cells, while the mutant strain was found to be deficient for dihydropyrimidine dehydrogenase activity. The dehydrogenase was shown to utilize NADPH as its nicotinamide cofactor. Growth of ATCC 11303 cells on uracil or glutamic acid instead of ammonium sulfate as a nitrogen source increased the reductive pathway enzyme activities. The mutant strain exhibited increased catabolic enzyme activities after growth on ammonium sulfate or glutamic acid.Key words: uracil catabolism, dihydropyrimidine dehydrogenase, reductive pathway, mutant, Escherichia coli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call