Abstract

Cultures of the rat skeletal muscle myoblast cell line, L6, were treated with the mutagen ethylmethanesulfonate and grown in the presence of alpha-amanitin, an inhibitor of RNA polymerase II in vitro. One clonal cell line, Ama102, resistant tc the cytotoxic action of 2 mu-g/ml of alpha-amanitin was isolated and extensively characterized. Ama102 cells were about 30-fold more resistant to alpha-amanitin than their Ama+ parent cells based on a comparison of the concentration of alpha-amanitin required to reduce their plating efficiencies to similar extents. The RNA polymerase activities from Ama+ and Ama102 cells were solubilized and separated by DEAE-Sephadex chromatography. Whereas all of the Ama+ RNA polymerase II activity was inhibited by 0.1 mu-g/ml of alpha-amanitin, about 30% of the activity in the Ama102 RNA polymerase II peak was resistant to this concentration of alpha-amanitin and was inhibited only by much higher concentrations (25 mu-g/ml) of alpha-amanitin. This alpha-amanitin-resistant activity in Ama102 cells was identified as a bona fide RNA polymerase II by its chromatographic behavior on DEAE-Sephadex, salt optimum, preference for denatured DNA as template, insensitivity to inhibition by potassium phosphate, thermal inactivation kinetics, and inactivation by anti-RNA polymerase II antiserum. Both RNA polymerase IIa and IIb from Ama102 cells exhibited the partial alpha-amanitin resistance, as did this activity when purified further on phosphocellusose. Unlike the parental Ama+ cells, Ama102 cells neither fused at confluence nor showed an increase in the specific activity of creatine kinase. The altered sensitivity of the Ama102 RNA polymerase II to alpha-amanitin appears to account for the drug-resistant phenotype of these cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call