Abstract

BackgroundMalaria is still a global health problem and vector control is the cornerstone of disease control strategies using indoor residual insecticide spraying (IRS) and insecticide-treated nets. The situation is becoming acute with widespread resistance to the limited arsenal of available insecticide classes. Therefore, new and innovative tools to reduce Plasmodium transmission are in need and this situation raised considerable interest in using sterile insect technique (SIT) against human pest insects, particularly Anopheles malaria vectors. When considering a mosquito release programme, one of the first issues to be addressed is how to eliminate/separate the hematophagous vector females. In this paper, we report the development and evaluation of an Anopheles arabiensis temperature-sensitive lethal (tsl) strain towards its potential use for the development of a genetic sexing strain (GSS).Anopheles arabiensis male mosquitoes originated from North Cameroon were treated with 0.05% ethyl methanesulfonate (EMS). The mutagen was added to 10% sucrose solution and mosquitoes fed ad-libitum for 24h and 48h on a cotton wool soaked with sucrose-mutagen solution placed at the top of the cup. Treated males were then allowed to mate with wild virgin females and their progenies were screened for heat sensitivity from F3 to F8, until the isolation and establishment of a tsl strain which was further characterized by assessing its productivity (fecundity and fertility), larval development, adult longevity as well as nature and inheritance pattern of the tsl.ResultsObservations showed that the number of eggs laid and their hatch rate were similar between females that mated with mutagenized males and those from the control suggesting that mutagenesis didn't affect An. arabiensis male fecundity and fertility. At F3, fourteen isofemale families out of 88 tested, which showed mortalities ranged between 50 and 80 %, were selected as lines potentially containing a tsl mutation. From F4 to F8, a tsl strain was isolated and established by screening L1 larvae at 41°C for 3 hours. This strain showed similar life history traits compared to the wild type strain in terms of fertility, larval development time and adult's emergence. Crossing experiments to further assess the nature and inheritance pattern of the tsl phenotype showed that it is due to a recessive allele located on an autosome.ConclusionThe successful establishment of the An. arabiensis tsl strain is a valuable tool towards the development of a GSS for SIT applications against this species. This will be done by induction of a Y-autosome translocation to link the wild-type allele to the Y chromosome in such manner that males are wild-type (temperature resistant) and females are mutant (temperature sensitive).

Highlights

  • Malaria is caused by the Plasmodium parasites which are transmitted to humans through the bite of infected female Anopheles mosquitoes

  • The successful establishment of the An. arabiensis tsl strain is a valuable tool towards the development of a genetic sexing strain (GSS) for sterile insect technique (SIT) applications against this species

  • We report the establishment and evaluation of an An. arabiensis tsl strain towards its potential use for the development of a genetic sexing strain, similar to the Mediterranean fruit fly C. capitata tsl-based Vienna 8 GSS which is currently used for SIT applications to suppress populations of this major agricultural pest worldwide [22,23,24]

Read more

Summary

Introduction

Malaria is caused by the Plasmodium parasites which are transmitted to humans through the bite of infected female Anopheles mosquitoes. In addition to drug administration, the control of malaria mainly relies on the ability to suppress mosquito vector populations or to prevent human-vector contacts using conventional methods such as indoor residual insecticide spraying (IRS) and insecticide-treated nets, respectively [2]. The efficacy of these methods is seriously compromised by the emergence and spread of insecticide resistance in mosquitoes, and there are legitimate environmental and human health concerns about many insecticides used for vector control [3,4,5]. Malaria is still a global health problem and vector control is the cornerstone of disease control strategies using indoor residual insecticide spraying (IRS) and insecticide-treated nets. New and innovative tools to reduce Plasmodium transmission are in need and this situation raised considerable interest in using sterile insect technique (SIT) against human pest insects, Anopheles malaria vectors. Treated males were allowed to mate with wild virgin females and their progenies were screened for heat sensitivity from F3 to F8, until the isolation and establishment of a tsl strain which was further characterized by assessing its productivity (fecundity and fertility), larval development, adult longevity as well as nature and inheritance pattern of the tsl

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.