Abstract

A methanogenic bioreactor that utilized wastepaper was developed and operated at 55 degrees C. Microbial community structure analysis showed the presence of a group of clostridia that specifically occurred during the period of high fermentation efficiency. To isolate the effective cellulose digester, the sludge that exhibited high fermentation efficiency was inoculated into a synthetic medium that contained cellulose powder as the sole carbon source and was successively cultivated. A comprehensive 16S rRNA gene sequencing study revealed that the enriched culture contained various clostridia that had diverse phylogenetic positions. The microorganisms were further enriched by successive cultivation with filter paper as the substrate, as well as the bait carrier. A resultant isolate, strain EBR45 (= Clostridium sp. strain NBRC101661), was a new member of the order Clostridiales phylogenetically and physiologically related to Clostridium thermocellum and Clostridium straminisolvens. Specific PCR-based monitoring demonstrated that strain EBR45 specifically occurred during the high fermentation efficiency period in the original methanogenic sludge. Strain EBR45 effectively digested office paper in its pure cultivation system with a synthetic medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.