Abstract

To investigate the resistant mechanisms against MMC in human tumor cells, we isolated an MMC-resistant variant (HT-29/MMC) of HT-29 human colon carcinoma cells. HT-29/MMC cells showed 5-fold resistance to MMC as compared with the parental cell line but did not show cross-resistance to Adriamycin, vincristine, ACNU, bleomycin, or cisplatin. Treatment of the cells with dicoumarol, an inhibitor of DT-diaphorase, reduced the cytotoxicity of MMC in DT-diaphorase proficient HT-29 cells but not in HT-29/MMC cells. HT-29/MMC cells were 5 times more sensitive than HT-29 cells to menadione, which is detoxified by DT-diaphorase, DT-diaphorase was deficient in HT-29/MMC cells as determined by the enzyme activity and immunoblot analysis of the cytoplasmic proteins. Levels of cytochrome P-450 reductase and glutathione S-transferase, however, were comparable in both cell lines. The amount of [3H]-MMC found covalently bound to chromosomal DNA in HT-29/MMC cells was one-fourth that detected in HT-29 cells. Treatment with dicoumarol reduced the DNA-bound MMC in HT-29 cells but not in HT-29/MMC cells. These results indicate that the deficiency in DT-diaphorase, an activating enzyme of MMC, is one of the mechanisms of resistance in HT-29/MMC cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call