Abstract

Hermetia illucens is a voracious insect scavenger, decomposing food waste efficiently. To survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from H. illucens in our previous study (Lee et al., 2014). Functional screening of the library on carboxymethyl cellulose plates identified a fosmid clone the product of which displayed hydrolytic activity. Sequence analysis of the fosmid revealed a novel α-galactosidase gene, Agas2. The Agas2 gene is composed of 2,007 base pairs encoding 668 amino acids with a deduced 25 amino acid N-terminal signal peptide sequence. The conceptual translation and domain analysis of Agas2 showed the highest sequence identity (84%) with the putative α-galactosidase of Dysgonomonas sp. HGC4, exhibiting well-conserved domain homology with glycosyl hydrolase family 97. Phylogenetic analysis indicated that Agas2 may be a currently uncharacterized α-galactosidase. The recombinant protein, rAgas2, was successfully expressed in E. coli. rAgas2 showed the highest activity at 40 °C and pH 7.0. It displayed great pH stability within a pH range of 5–11 for 15 h at 4 °C. rAgas2 was highly stable under stringent conditions, including polar organic solvents, non-ionic detergents, salt, and proteases. rAgas2 hydrolyzed α-d-galactose substrates, showing the maximum enzymatic activity toward p-nitrophenyl α-d-galactopyranoside (specific activity 128.37 U/mg). However, rAgas2 did not hydrolyze substrates linked with β-glucose moieties. Overall, Agas2 may be an attractive candidate for the degradation of α-galactose family oligosaccharides in high-salt, protease-rich and high-organic-solvent processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.